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ABSTRACT

The integration of prompt tuning with multimodal learning has
shown significant generalization abilities for various downstream
tasks. Despite advancements, existing methods heavily depend
on massive modality-specific labeled data (e.g., video, audio, and
image), or are customized for a single modality. In this study, we
present Text as Any-Modality by Consistent Prompt Tuning (TaAM-
CPT), a scalable approach for constructing a general represen-
tation model toward unlimited modalities using solely text data.
TaAM-CPT comprises modality prompt pools, text construction,
and modality-aligned text encoders from pre-trained models, which
allows for extending new modalities by simply adding prompt pools
and modality-aligned text encoders. To harmonize the learning
across different modalities, TaAAM-CPT designs intra- and inter-
modal learning objectives, which can capture category details within
modalities while maintaining semantic consistency across different
modalities. Benefiting from its scalable architecture and pre-trained
models, TaAM-CPT can be seamlessly extended to accommodate
unlimited modalities. Remarkably, without any modality-specific la-
beled data, TAAM-CPT achieves leading results on diverse datasets
spanning various modalities, including video classification, image
classification, and audio classification. The code is available at
https://github.com/Jinx630/TaAM-CPT.
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1 INTRODUCTION

As unified architectures [9, 15, 50] and multimodal pre-training
models [8, 19, 37, 51] progress, recent works have exhibited im-
pressive representation abilities in multimodal learning [13, 22,
59, 68, 72, 75]. In scenarios restricted by either labeled data or
computational resources, owing to the aligned pre-trained mod-
els [37, 55, 61], prompt tuning [57, 60, 69] showcases robust gener-
alization capabilities across various downstream tasks by adjusting
a negligible number of parameters.

Current prompt tuning techniques rely heavily on massive modality-

specific labeled data (e.g., video, audio, and image). For instance,
as depicted in Figure 1 (a)(e), image supervised methods [18, 74]
design text prompt to align with labeled image data for image-level
tasks. Likewise, for video and audio level tasks, previous meth-
ods [20, 21, 29] adapt pre-trained models to downstream tasks
supervised with labeled data. However, sufficient modality-specific
labeled data necessitates considerable manual effort, which, in the
face of labeled data limits, can impede the development of robust
object classification networks. In the absence of labeled data alto-
gether, these techniques may even fail outright.

To avoid above issue, some works advocate using the well-aligned
embedding space, achieved by contrastive learning (e.g.,CLIP [6]),
for prompt tuning. TAI-DPT [16], as a pioneering work depicted
in Figure 1 (b)(e), proposes to enable labeled text data (e.g., coco-
caption [27]) instead of labeled image data for learning text prompt,
while testing with images and learned text prompt. Similarly, PT-
Text [26] pioneers the approach of audio-free prompt tuning, where
the text prompt is learned from text rather than audio. To further
reduce the manual cost of labeled text data, PVP [58] and TAI-
Adapter [76] recommend using synthetic text data generated by
LLMs [47] as a substitute. However, these strategies require the
design of sophisticated text prompts, visual prompts, or adapter
frameworks, as well as the deployment of a text encoder to encode
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Figure 1: Different prompt tuning by frozen pre-trained encoders. (a)(b). Supervised methods with labeled and text data. (c).
TaAM-CPT. Prompt tuning toward unlimited modalities without prompt encoding processes. (d). Testing of TaAM-CPT. (e).

Testing of previous works.

the prompts. Additionally, these approaches focus solely on a sin-
gle modality (e.g., video, image, or audio classification), and for
more modalities, multiple independent models need to be trained
additionally.

In this paper, we explore a universal representation model capa-
ble of scaling to unlimited modalities without any modality-specific
labeled data. This necessitates the following conditions: 1) The
model exclusively relies on easy-collected text data for training,
eliminating the need for any labeled data. 2) The model architec-
ture needs to be flexible enough to accommodate new categories or
modalities and simplify the design of the prompt, thereby reducing
the complexity of prompt encoding. 3) The model must ensure that
learning across different modalities does not mutually affect each
other, and appropriate training objectives should be designed to
enhance the representational capabilities of all modalities.

Motivated by these factors, as shown in Figure 1 (c) and Figure
1 (d), we propose Text as Any-Modality for Consistent Prompt
Tuning (TaAM-CPT), a general representation model toward un-
limited modalities solely using text data generated by LLMs. Unlike
TAI-DPT [16] and PVP [58], which require intricate, multi-grained
text prompt designs, our method simplifies the design by charac-
terizing any modality category as a randomly initialized vector.
Leveraging the instruction following ability of LLMs [47], we can
comfortably obtain text training data for any category. By directly
optimizing the vectors within the aligned space of pre-trained mod-
els [37, 55, 61], we eliminate intermediate encoding processes. Since
the initialization way for each category is identical, TaAM-CPT
ensures the flexible addition of any category from any modality
without retraining the already learned class-specific prompt. More-
over, we design a uni-directional contrastive loss, which uses modal-
ities with stronger representational abilities to guide the learning
of those weaker ones. Surprisingly, not only does it enhance the
representational abilities of weaker modalities, but it also further
improves the representational abilities of stronger modalities.

We conduct extensive experiments across multiple modalities
and datasets, including video, audio, and image classification tasks.
Without any labeled data, TaAM-CPT achieves superior perfor-
mance to pre-trained models and recent SOTAs.

2 RELATED WORK

2.1 Video, Image, and Audio Classification.

Video classification involves identifying actions in the video. Early
works [12, 48, 56] focus on designing two-stream networks and
3D CNN:ss for action recognition. Building on the success of trans-
formers in the image, recent works [25, 53, 63, 64, 70, 71] explore
effective objectives for adapting pre-trained image models to video
understanding. To handle the problem of local video redundancy,
UniFormerV2 [23] introduces local and global relation aggregators
to learn discriminative representations.

Image classification aims to recognize all the categories in an im-
age. To explore the correlations among labels, some works propose
to incorporate semantic dependencies via object proposals [30, 54],
semantic graph [73, 77], and transformer-based architecture [1, 41].
When labeled data is limited, another line of work [31, 32, 44] at-
tempts to solve more challenging scenarios, including zero-shot,
few-shot, and partial-label tasks.

Audio classification involves tagging audio signals into differ-
ent categories. Traditional works [17, 34] mainly rely on machine
learning technology and manual feature extraction. In recent years,
driven by advancements in deep learning, some works [40, 62] have
begun to explore the application of neural networks. Additionally,
some efforts [14, 28] attempt to apply the transformer to audio
classification, thereby capturing the long-term dependencies.

2.2 Prompt Tuning in Multimodal Learning.

Prompt tuning [10, 21, 52, 74] has emerged for rapidly adapting to
downstream tasks by adjusting a minimal number of parameters.
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Figure 2: TaAM-CPT overview. We represent any category as a class-specific prompt and use LLMs to generate text data.
Intra-modal learning aims to learn each prompt pool by pre-trained models. Inter-modal learning utilizes stronger modalities

to guide those weaker ones.

For instance, some works [35, 74] introduce learnable context vec-
tors to align with images via frozen CLIP encoders. When labeled
data is limited, TAI-DPT [16] and PT-Text [26] introduced multi-
grained text prompts, surpassing pre-trained multimodal models
in image and audio classification tasks, solely training text data.
TAI-Adapter [76] combines LLM-driven data generation and cross-
modal learning to enhance multi-label image classification tasks.
PVP [58] further enhances image classification performance by
co-learning pseudo-visual prompts and text prompts.

3 METHODS

The overview architecture of our proposed TaAM-CPT is illustrated
in Figure 2. As shown, TaAM-CPT is designed as a general repre-
sentation model toward unlimited modalities using only text data
for prompt learning, which mainly consists of three parts: a) LLMs-
assisted data construction, b) Prompt initializing and modality text
encoding, and c) Intra- and inter-modal learning.

3.1 LLMs-Assisted Data Construction

Unlike noun filters used in TAI-DPT [16] and PVP [58], we construct
prompt templates to instruct LLMs to generate text sentences that
contain the given labels, as shown in Figure 2. For any given labels,
we design the following query template:

TEMPLATE: Making several English sentences to describe a{ Modal-
ity }. Requirements: Generate 5 English sentences! Each sentence
should be less than 25 words and includes: { Labels }.

{ Modality } is populated with “video”, “audio”, “image”, etc,
and { Labels } indicates modality-specific labels, with a maximum
of 2 for video modality, 3 for image and audio modalities. This
design avoids the diversity (e.g., singular and plural) caused by
noun filtering, and avoids noun filtering to process the phrases
describing video and audio. Therefore, by generating text sentences
containing these labels through LLMs, the corresponding ground
truth for each sentence is from the { Labels } in the template. More
details of prompt templates and text data generated by LLMs are
provided in the appendix.

3.2 Prompt Initializing and Text Encoding
Prompt Initializing. We take video (V), audio (A), and image (7')
modalities as examples to introduce TaAM-CPT and demonstrate
its potential for extension toward unlimited modalities. For each
modality, we maintain a modality-specific prompt pool, defined as
follows:

P = [ p1% Py P - P | (1)

where m € {V, A, I} represents different modalities; p;” e R4
denotes i-th class-specific prompt; N denotes the total number
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of labels. Note that the length of the prompt pool is identical for
each modality (i.e., Py, € RNXd {V, A, I}), encompassing all
labels across all modalities. When a new modality emerges, a new
modality-specific prompt pool will be created, avoiding affecting
the already learned other prompt pools. When a new label arises, a
new class-specific prompt will also be added to each prompt pool,
avoiding affecting the existing class-specific prompts. Therefore,
TaAM-CPT can be easily extended to unlimited modalities and
categories.

Text Encoding. According to previous methods [16, 26, 58, 66],
text is treated as a surrogate for other modalities for zero-shot classi-
fication. Such a paradigm potentially assumes that pre-trained mod-
els have aligned text with other modalities into a shared embedding
space, thereby making it feasible to extract text features as substi-
tutes for other modalities. However, these methods are designed for
individual modalities and fail to utilize complementary information
among multiple modalities. Hence, as shown in Figure 2, we adopt
a parallel architecture and obtain modality-aligned text encoders
(Texty, Texty, andText; Encoder) from pre-trained models ViCLIP,
CLAP, and CLIP, to extract text features. Furthermore, we find
CLIP and CLAP have superior representation abilities for image
and audio, compared to ViCLIP for video, specifically reflected in
the training loss and convergence speed of video modality. Inspired
by the discovery, we design an uni-directional learning strategy to
use stronger modalities to guide the learning of weaker modalities.
We find that uni-directional learning can improve the performance
for all modalities simultaneously.

3.3 Intra- and Inter-modal Learning

To learn the modality prompt pool for each modality, our work is
to design two learning objectives: a) intra-modal learning aims to
optimize the prompt pool for each modality using global text fea-
tures. b) inter-modal learning aims to improve the representational
abilities of weaker modalities based on stronger ones.
Intra-modal Learning. To make it easier, we take image modal-
ity as an example to introduce intra-modal learning, and the same
approach is applied to video and audio modalities. The candidate
label set is represented as C = {l1, Iz, ..., N }, where N is the total
number of labels across all modalities. Then, we denote the text
training data for image labels as 7 = {t;, yi}?;ll, where M is the
number of texts; y; = {yi1, yiz, ... Yi, N} denotes the ground truth
of the text t; and y;; for j € {1,2,.., N} is 1 if the ¢; is generated
from the label [; and 0 otherwise. Then, the text embedding of #; is
extracted by frozen text encoder of CLIP [6], formulated as follows:

h; = ¢(t), @

where ¢ denotes the text encoder of CLIP, h; € R4 denotes the
normalized global text feature of t; with d being the dimension.
When processing the input text data of video or audio modalities,
we simply replace ¢ as the text encoder of ViCLIP or CLAP to
extract the corresponding text feature. The similarity of t; and the
prompt pool of image modality can then be computed by:

sip= (i p) Vi€ {123, N), ®)

where p; denotes the j-th prompt in the prompt pool of image
modality. Note that the prompt can be optimized directly without
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processing through any encoder or MLP. Such a paradigm simpli-
fies the design of the prompt and reduces the computational cost
by half. For the optimization of the prompt, we employ Ranking
loss instead of InfoNCE or Cross-Entropy loss, since InfoNCE loss
requires massive negative samples and high-cost softmax function
to optimize well, Cross-Entropy loss only optimizes positive la-
bels while ignoring loss from negative labels, leading to very slow
convergence. Ranking loss is computed by:

B

Ly= % Z Z Z max (0, m — s; + skj), (4)

k=1ie{c*} je{c™}

where c¢* denotes positive labels with y;; for j € {1,2,..,N}is1,¢”
denotes negative labels, si; and s ; are positive pair and negative
pair similarities described in Eq. (3), m is denoted as the margin
to measure the difference between each pair of similarities. For
the video and audio modalities, we substitute the text encoder ¢
described in Eq. (3) to the text encoder of ViCLIP and CLAP to
obtain the text feature, and then compute the similarities between
the text feature and video prompt pool, audio prompt pool. As a
result, we can obtain the Ranking loss Ly and L and L. The
total loss for intra-modal learning can be written as:

Lintra = L1+ Lv + La. ©)

During training, we fix text encoders and optimize the modality-
specific prompt pools by Eq. (5). Note that the positive labels in
Eq. (4) only contain positive image labels, while negative labels
contain not only negative image labels but also labels from other
modalities. Other modalities’ labels serving as negative labels not
only expand the number of negative pairs but also enhance the
representational ability of the video modality. By analogy, this rule
can be applied to audio and image modalities also.

Inter-modal Learning. The discrepancy in the information con-
tent of image, audio, and video modalities results in a significant
modality gap between the aligned video and text modalities and
subpar zero-shot classification performance. Motivated by this phe-
nomenon, we propose uni-directional contrastive learning, which
guides the learning of weaker modalities using the stronger ones. In
this paper, we adaptively determine the weak modality during train-
ing based on the lowest validation performance. Specifically, the
video modality is treated as weak as its performance is always lower,
and image and audio as stronger ones. To facilitate understanding,
we rephrase Eq. (1) into the follow format:

— v VvV vV vV v Vv vV vV
Py = [ Py}, Puys -+ Pyys Pays Pay o Pags Pwys Pwgs - Py s

A A A A A A A A A
P = [ Py}: PYys s Prys Pay» Pay -+ Pags Py Py - Py, |- (6)

_ I I Ir I I I T I va
Py = [ Py» Pyys - Pys Pays Pay - Pags Pavy» Pavgs -+ Py, s

where v+a+w=N, pI;V, pf‘ and p]‘: represent class-specific prompt
of video, audio, and image prompt pools. Note that the initialized
prompt pool of each modality is identical, which means the prompt
pool of the video modality contains video labels of size v, audio
labels of size a, and image labels of size w. The prompt pool for
image and audio modalities is the same as the video modality.

We then present the uni-directional contrastive objective based
on Pq, and P 4. Specifically, the similarity matrix can be computed
by P;{Pq/ € RNXN_ And the ground truth for Py and P4 of
N labels is a diagonal matrix. Note that the size of the similarity
matrix and ground truth matrix is batch-size agnostic and equals
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the number of total labels. Therefore, for each video prompt of P,
and audio prompt of P 4, the softmax-normalized video prompt to
audio prompt and ground truth matrix can be defined as:

0 0 - 0 - 0

0
v2a _ _ %P (s(z)i, aj)/T) T I S S (7
Y SN exp (s(vi, ax)/7) o o 0 1 o0

0 e 00 e

where v; and a; denote video prompt and audio prompt, s(-, -) rep-
resents similarity function. Note that the ground truth label y?2¢ is
different from the label matrix in vanilla contrastive learning (i.e.
identity matrix), where the first v + w diagonal elements are set
to 0. It indicates that the loss generated at these positions will be
ignored when calculating the cross-entropy loss. Therefore, the uni-
directional contrastive loss for Py and P # can be defined as L,24=
LCE(y"Z“,p”Z“), where yl?;.z" €{0,1} for Vi,j€{1,2,..., N} rep-
resents the similarity ground truth between video prompt v; and
audio prompt a;. Similarly, we can obtain the uni-directional con-
trastive loss between the prompt pool of video modality P, and
prompt pool of image modality P 7: L= Lcp(y??Y, p®2¥). And
the total inter-learning loss can be defined as:

Linter = Lo2a + Lozw. ®)

Consequently, we align the prompts of image labels in the video
prompt pool with those in the image prompt pool, and the prompts
of audio labels with those in the audio prompt pool. These aligned
image and audio prompts will be treated as negative labels for train-
ing video prompt pool in intra-modal learning, thereby expanding
the number of negative pairs. In addition, diagonal elements cor-
responding to video and image labels in the ground truth matrix
are set to 0, which avoids affecting the learning of the prompt of
video labels. During training, we apply uni-directional contrastive
learning to video-to-audio and video-to-image. The total loss of
TaAM-CPT is: Ligtal = A1 Lintra + A2 Linter where A1 and A5 denote
the loss weights of intra-modal learning and inter-modal learning.

3.4 Discussion

s o ——-—--—-—- Fm————m——————mm——— - — 1

P :: Po_sitive/Negative : _Negative N(_egative :
i image labels : video labels audio labels :
L o e e e e e e e e e e e e e e e e e e
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Figure 3: Visualization of learning process.

In this subsection, as illustrated in Figure 3, we discuss how
intra- and inter-modal learning work well. For inter-modal learn-
ing, we employ uni-directional contrastive learning, aligning “neg-
ative image/audio labels” from the “video prompt pool” with “pos-
itive/negative image labels” from the “image prompt pool” and
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“positive/negative audio labels” from the “audio prompt pool”. We
can actually treat this process as transferring knowledge from the
“image/audio prompt pool” to the “video prompt pool”. For intra-
modal learning, take the image modality as an example. Although
the “negative labels” contain “negative image/video/audio labels” in
the “image prompt pool”, these “negative video/audio labels” don’t
require modality alignment. The purpose is just to increase the
number of negative samples, thereby learning more robust repre-
sentations of “positive image labels”. For the video modality, the
“negative labels” come from aligned “negative image/audio labels”
and “negative video labels” in the “video prompt pool”. Such a
uni-directional contrastive learning strategy ensures that “nega-
tive image/audio labels” in the “video prompt pool” can not affect
the learning of “positive image/audio labels” in the “image/audio
prompt pool”.

3.5 Model Testing

After learning the prompt pool of each modality, each prompt
uniquely represents a specific class. We take the video modality as
an example to showcase the video classification. Given an input
video, we replace the video modality-specific text encoder in Figure
2 with the video encoder of ViCLIP to obtain the video feature.
Then, we directly calculate the similarity between the video feature
and each prompt in the video prompt pool, and the prediction of
the input video is the prompt with the highest similarity. It can be
seen that each prompt is calculated directly with the video features
without any encoding processing, which significantly improves the
inference speed of the model. For image classification and audio
classification, we adopt the same approach, calculating the similar-
ity between image or audio and their corresponding prompt pools
to obtain the predictions.

4 EXPERIMENTS
4.1 Experimental Setup

Datasets. We conduct extensive experiments on 13 datasets across
video, image, and audio modalities. For video classification, we
select UCF101 and the large-scale datasets Kinetic-400/600/700. For
image classification, besides MSCOCO, VOC2007, and NUSWIDE
used in previous works, we also select the VOC2012, ImageNet-mini,
and Objects365 to evaluate our method. For audio classification, we
follow PT-Text, selecting ESC50 and US8K.

Implementation Details. We select the pre-trained models,
open-sourced by the LAION [42], as the modality-specific encoders,
i.e., VICLIP-Base for video modality, CLIP-ViT-B-32 for image modal-
ity, and CLAP for audio modality. The LLaMA-2-7B is selected for
generating 100k text sentences for each modality, on a single Tesla
V100, it takes about 2 hours. By simply adding some spatial relation-
ships instructions in the template, LLaMA-2-7B can generate texts
that accurately reflect spatial relationships. For each class-specific
prompt, we initialize it as a vector with a length of 512, mean being
0, and std being 0.02. During training, all modality-aligned text
encoders are fixed, and only prompts are optimized. We evaluate
TaAM-CPT by top-1/5 accuracy and mean average precision (mAP)
metrics. See appendix for more implementation details.
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Table 1: Comparison with ZS-CLIP and SOTAs on zero-shot image classification.

Table 2: Comparison with ZS-CLAP and SOTAs on zero-

Methods MSCOCO|VO0C2007 | VOC2012 | NUSWIDE ‘ ImageNet-mini ‘ Objects365  shot audio classification.
ZS - CLIP 0104 55.6 80.5 80.1 37.1 (85.5,94.3) 19.8 Methods ‘ ESC50 ‘ USSK
TAT - DPT |cypros) 65.1 883 85.1 465 (86.2,94.7) 24.1
TAI - Adapter|,ixivz3) 67.7 89.0 85.5 53.3 (86.7,94.4) 25.8 ZS - CLAP jcassp23) 90.5 76.2
Data - free,,xiv24 66.8 88.7 86.0 47.0 86.1, 94.9 239
larXiva4] ( ) PT - Text|icasspas] 939 -

PVP can4) 67.7 88.9 86.2 493 (87.4,953) 263

TaAM - CPT(Ours) 94.2 85.2
TaAM - CPT(Ours) | 68.1 | 894 | 878 | 496 | (904,983) | 282

Table 3: Results with ZS-ViCLIP on zero-shot video classification.

| UCF101 | K400 | K600 | K700

Methods [top1[top5 | top1 [top5 [ top1]top5 |top1 |top5

ZS-ViCLIP 1c1 o4

TaAM-CPT(Ours) |75.4|95.7 | 55.2(80.4|52.9(80.1|46.0 | 71.1

73.3 ‘ 933 ‘ 53.8 ‘ 78.7 ‘ 52.0 ‘ 78.4 ‘ 435 ‘ 68.6

4.2 Results on Zero-Shot Tasks

To evaluate TaAM-CPT, besides the zero-shot performance compar-
ison with pre-trained multimodal models (i.e. ViCLIP, CLIP, CLAP),
we also compare its performance with existing SOTA methods on
image classification and audio classification tasks. Notably, in the
zero-shot video classification field, there has been no research that
explores a similar training setting, i.e., solely training with text
data for prompt tuning. Therefore, we only select ViCLIP as the
zero-shot benchmark for comparison.

Video Classification. We adopt the default prompt "a video of
a [CLASS]" to obtain the zero-shot results of ViCLIP. From Table 3,
TaAM-CPT outperforms ZS-ViCLIP by 2.1% top-1 and 2.4% top-5
accuracy on UCF101. On the larger Kinetic-400/600/700 datasets,
respectively, TaAM-CPT also surpasses ZS-ViCLIP by 0.9~3.0% top-
1 and top-5 accuracy on all datasets, showing the effectiveness of
TaAM-CPT without labeled video data.

Image Classification. For zero-shot image classification, we
present the results in Table 1 and compare our approach with SO-
TAs TAI-DPT [16], TAI-Adapter [76], Data-free [66], and PVP [58]
trained with complex prompt design or adapter module. The results
of ZS-CLIP are obtained by inputting the default prompt "a photo
of a [CLASS]" to CLIP. From Table 1, TaAM-CPT outperforms ZS-
CLIP by a large margin of 12.5% and 12.4% mAP on MSCOCO and
NUSWIDE, respectively. On VOC2007 and VOC2012, TaAM-CPT
also improves by 7.0% ~9.0% over ZS-CLIP.

Audio Classification. The results for zero-shot audio classi-
fication with CLAP and recent SOTA PT-Text [26] are shown in
Table 2. Our TAAM-CPT outperforms ZS-CLAP with 3.7% and 9.0%
accuracy on ESC50 and US8K, despite the high performance of
CLAP. Furthermore, without intricate prompt design, TaAM-CPT
surpasses PT-Text 0.3% on the ESC50 dataset.

4.3 Integrating with other methods

Following TAI-DPT [16], we conduct the experiments of integrating
TaAM-CPT with other supervised models in an off-the-shelf man-
ner, further improving their performance. Take a video with n labels
as an example, the supervised model’s softmax predictions denote as
Ps = (ps1, Ps2s - Psn)- For TaAAM-CPT, we calculate the similarity
between video and n class-specific video prompts and obtain soft-
max predictions Pt = (ps1, pr2, ... Ptn). Therefore, the integrated
results can be computed by Py = (ps1 + pr1, Ps2 + Pt2s - Psn + Pen)-

Table 4: Integrating TaAM-CPT with supervised video models.

K400 K600 K700

Methods

topl | top5 | topl | top5 | topl | top5
Video Swin|cyproz 82.7 | 95.5 | 84.0 | 96.5 - -
+TaAM-CPT(Ours) | 83.5 | 959 | 84.8 | 97.1 - -
MTV cypraz) 81.8 | 950 | 83.8 | 96.2 | 73.5 | 90.3
+TaAM-CPT(Ours) | 82.9 | 95.7 | 84.7 | 97.0 | 74.8 | 91.2
AIM1crr23) 83.9 | 96.3 - - 76.9 | 92.1
+TaAM-CPT(Ours) | 84.6 | 97.2 - - 77.2 | 93.0
UniFormerV2iccyys) | 84.0 | 96.3 | 84.8 | 96.8 | 75.4 | 92.6
+TaAM-CPT(Ours) | 84.8 | 97.1 | 85.5 | 97.6 | 76.1 | 93.4
UMT [1cevas) 857 | 97.0 | 87.8 | 97.8 | 785 | 943
+TaAM-CPT(Ours) | 86.2 | 97.6 | 88.1 | 98.0 | 78.8 | 94.7

Video Classification. We select the Base size model of Video
Swin Transformer [33], MTV [65], AIM [67], UniFormerV2 [23],
and UMT [24] as baselines. The results are shown in Table 4. Af-
ter integrating our TaAM-CPT with Video Swin, MTV, AIM-B,
UniFormerV2-B, and UMT-B on Kinetic-400/600/700 datasets, the
video classification performance of these methods can be further
improved, while these methods achieve promising performances.

Image Classification. In Table 6, we select the newest Du-
alCoOp++ [18] instead of DualCoOp [46] used in previous SO-
TAs [16, 58], and reproduce DualCoOp++ on these datasets (marked
with *). + indicates integrating predictions with DualCoOp++*.
In Table 6, while DualCoOp++" obtains promising performance,
+TaAM-CPT can further enhance the image classification results.
Compared with +TAI-DPT and +PVP, our +TaAM-CPT achieves
higher performance in all cases, and surpasses +PVP by consider-
able margins of 0.2%, 0.3%, and 1.2% mAP on these datasets. Notably,
TAI-DPT and PVP rely on costly prompt encoders and are only
customized for a single image modality. Our TaAM-CPT is a general
representation model that can accommodate unlimited modalities
and class labels.

Table 5: Integrating TaAM-CPT with supervised audio methods.

Methods | ESC50 | US8K
HTS-AT [1casspaz) 97.0 94.7
+TaAM-CPT(Ours) 97.2 95.1
CrissCross|aaans) 90.5 92.1
+TaAM-CPT(Ours) 94.7 92.8

Audio Classification. We also study the audio classification
results of integrating with HTS-AT [5] and CrissCross [40]. In the
same video classification task, we compute the similarities between
the audio feature and the audio prompt pool as the predictions.
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Table 6: The mAP results for partial-label setting on all datasets, where the performance of +TAI-DPT/+PVP/+TaAM-CPT integrates the predictions of TAI-

DPT/PVP/TaAM-CPT and DualCoOp++*.
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| Methods 10%  20%  30%  40%  50%  60%  70%  80%  90% | Avg
DualCoOp [neupsz2)] 81.0 82.3 82.9 83.4 83.5 83.9 84.0 84.1 84.3 833
© | DualCoOp++jrpayms] 81.4 83.1 83.7 84.2 84.4 84.5 84.8 85.0 85.1 84.0
S | DualCoOp++*payi 81.5 83.2 84.0 84.4 84.5 84.7 84.8 85.1 85.2 84.1
9 +TALI-DPT | cypos| 81.7 83.3 84.5 84.5 84.7 85.0 85.1 85.2 85.2 84.3
= +PVPcand] 82.1 83.6 84.5 84.7 85.0 85.3 85.3 85.6 85.6 84.6
+TaAM-CPT(Ours) 82.4 83.8 84.6 85.0 85.1 85.3 85.5 85.7 85.8 84.8
DualCoOp xeupsz| 91.4 93.8 93.8 943 94.6 94.7 94.8 94.9 94.9 94.1
N DualCoOp++ [ 1payia] 92.7 93.4 93.8 94.0 94.3 94.4 94.4 94.7 94.9 94.1
S DualCoOp++* [ rpanias] 93.0 93.9 94.2 94.4 94.6 94.8 94.9 95.1 95.0 94.4
2 +TALI-DPT | cypros| 93.2 94.0 94.2 94.6 94.7 94.8 95.0 95.1 95.1 945
S +PVP [jcan) 935 943 94.4 94.6 95.0 95.1 95.2 95.2 953 94.7
+TaAM-CPT(Ours) 93.9 94.6 94.8 95.1 95.3 95.4 95.4 95.5 95.6 95.0
DualCoOp Neurpsz2) 54.0 56.2 56.9 57.4 57.9 57.9 57.6 58.2 58.8 57.2
= DualCoOp++*panii) 54.4 56.6 58.1 58.7 58.9 59.3 59.7 59.8 60.1 58.4
z +TALI-DPT | cypros| 56.9 58.1 58.5 58.8 58.8 59.1 59.1 59.5 60.0 58.7
2 +PVP car2i] 57.3 58.6 59.3 59.4 59.6 60.0 60.1 60.1 60.3 59.4
Z +TaAM-CPT(Ours) 58.2 59.6 60.5 60.7 60.8 61.3 61.4 61.3 61.7 60.6
From Table 5, the performance of both HST-AT and CrissCross is Table 8: Results of different learning manners.
enhanced on ESC50 [36] and US8K [39] datasets. Linter | K400 | MSCOCO | ESC50
. ZSVICLIPCLIPCLAP | (53.8,787) | 556 | 905
4.4 Further Analysis
(LV) — (A) (52.1,79.3) 64.8 91.7
We conduct further analysis to explore TaAM-CPT. More results (AV) —> (D) ‘ (51.9,79.5) ‘ 65.1 ‘ 91.8
(e.g., each cc?n?ponent, byperparameter, prompt dimension, more Jr—— (536,794) 1 924
datasets, training data size, etc.) are presented in the appendix. (A — (V) ‘ (532.792) ‘ 65.3 ‘ 93.2
Quantity of modalities and categories. We first explore the - -
feasibility of TaAM-CPT for unlimited modalities and categories. LAY (V) (54.3,79.8) ‘ 67.1 ‘ 92.9
(LA) — (V)(Ours) ( 55.2,80.4 ) 68.1 94.2

For clarity, we adopt Bert-base [8] with 110MB parameters as refer-
ence. TaAAM-CPT initializes each prompt with a 512-d vector, mean-
ing one class prompt occupies 512 parameters. Therefore, for N
modalities, TaAM-CPT can accommodate approximately w
class prompts. For example, for 10 modalities, the prompt pool size

can reach 21484, which is sufficient to cover the common categories.

Table 7: Results of evaluating the unified architecture.

VP|IP|AP| Lia| L1e| K400 |MSCOCO |ESC50
ZS-ViCLIP,CLIP,CLAP | (53.8,78.7) | 556 | 905
VX x| V| X |(538,789) - -

X |V x| V| X - 65.8 -

X | x|V |V | X - - 92.5
VIV V| V| X |(537,791) 65.2 92.7
VIV V| v [(552804) 68.1 94.2

Unified Architecture. Our TAAM-CPT is designed as a general
model toward unlimited modalities, exhibiting more robust object
recognition capabilities than single modality-specific models. Table
7 presents the results of training each modality independently by
intra-modal learning (e.g. VP v/ with L1, V'), as well as the impact
of applying the uni-directional contrastive learning (Le) across
modalities. We can see that training a single modality prompt by
intra-modal learning has already yielded better results than the
pre-trained models, and when all modalities are trained together,
the performance of each modality can be further improved.

Inter-moda Learning. In Table 8, (a,b) — (c) denotes uni-
directional contrastive learning from a,b to ¢, while «— denotes
naive bi-directional learning. Both (I, V) —— (A) and (A, V) — (I)
improve the performance of image and audio modalities while de-
creasing on video modality. Notably, (I} — (V) and (A) — (V)
significantly outperform ZS-CLIP and ZS-CLAP by a large margin,
demonstrating the effectiveness of inter-modal learning. Addition-
ally, uni-directional learning can achieve higher performance than
bi-directional learning on all datasets.

Table 9: Time complexity of adding new concepts compared to initial training
time. IT: Initial Training, CT: Continue Training, NT: Novel Training, Fro:
Frozen.

K400_Normal_30 [IT(58.1, 82.3)|CT(58.4, 82.5)[Fro(58.1, 82.3)

MSCOCO_Normal_30| IT(65.4) | CT(65.6) | Fro (65.4)
K400_Novel_20 | IT(56.3) | NT(56.7) | NT (56.5)
MSCOCO_Novel 20 | IT(69.2) | NT(68.8) | NT (69.3)
ESC50_Novel_20 | IT(92.1) | NT(92.5) | NT(93.0)
Training time | 28min | 30min | 17min

Time Complexity. The trainable parameters of TAAM-CPT are
the class-specific prompts. Therefore, for simplicity, we randomly
sample K400 with 30 video labels and MSCOCO with 30 image
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Figure 4: Results of different size of text training data on Kinetic-400, MSCOCO and ESC50 datasets.

labels as the initial label set. The novel concepts consist of addi-
tional labels (K400 with 20 video labels, MSCOCO with 20 image
labels), and the novel audio modality (ESC50 with 20 labels), with
each label containing 500 text descriptions using LLMs. The com-
parison of training time results is shown in Table 9, Among them,
(K400_Novel_20, MSCOCO_Novel_20, and ESC50_Novel_20) rep-
resent the added new labels and new modality. We can see that
for the normal labels (K400_Normal_30, MSCOCO_Normal_30),
whether they continue training (Continue training) or are frozen
(Frozen), neither affects the learning of the new modality labels and
maintains the performance that matches the initial joint training
(Initial training). For the novel modalities and labels, their Novel
training performances are still comparable to Initial training.

Text Training Data Size. Our TaAM-CPT is trained with text
data generated by LLMs instead of modality-specific labeled data.
Therefore, we conduct various experiments with different sizes of
text training data on the Kinetic-400, MSCOCO, and ESC50 datasets.
As shown in Figure 4, on the Kinetic-400 dataset with text data size
being 1k, the top-1 accuracy is only 9.8% due to the insufficient num-
ber of text data for each class, which hinders the learning of robust
class-specific representations. However, as we continue to expand
the scale of text training data, the corresponding text data for each
class also increases gradually. When the text data reaches 100K, our
TaAM-CPT outperforms ZS-ViCLIP. On the MSCOCO and ESC50
datasets, which contain 80 and 50 class labels, respectively, when
the amount of text data is 5K, our method has already significantly
surpassed ZS-CLIP and ZS-CLAP by 7% mAP and 2% top-1 accuracy.
The performance on these two datasets begins to stabilize when
the amount of text data is increased to 50K, indicating that datasets
with more classes require a larger scale of text training data.

4.5 Visualization
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- s
=4
J BT Gl R
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Figure 5: Distribution of video prompt and video feature.

Intra-modal Learning. We randomly selected 20 video classes
on Kinetic-400. For each video sample, we computed its similarity

with each video prompt, resulting in a 400-d vector and using t-
SNE [49] for visualization, which reflects the learning process of
each video class prompt in Figure 5. Since the initialization method
is identical, video samples from the same category show a uniform
distribution before model training (Step: 0). As training progresses,
the class-specific prompt begins to learn the unique representations
(Step: 21~1201) for each category (Step: 1601~2401). Visualizations for
more datasets can be found in the appendix.

@ Video Labels
® Image Labels ™

# Audio Labels

i B SXi
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Figure 6: Distribution of prompt for different modalities.

Inter-modal Learning. We select Kinetic-400, MSCOCO, and
ESC50 datasets, which contain 400, 80, and 50 class labels, respec-
tively. As shown in Figure 6, before model training (Step: 0), the
prompt pools for each modality are initialized in the same vec-
tor. When starting training, the distribution of different modali-
ties rapidly separates (Step: 11~211), as each modality first learns
modality-specific representations through modality-aligned text
encoders. As training progresses, uni-directional contrastive learn-
ing gradually pulls the representation space of the video modality
towards image and audio modalities (Step: 411~1411), indicating that
the video modality is continuously learning the representations
of image and audio modalities. Furthermore, each modality still
maintains its own representation space without being disrupted by
the other modalities (Step: 1611~1811).

5 CONCLUSION

In this paper, we explore a scalable way of constructing a universal
representation model for various modalities. Based on a flexible ar-
chitecture and aligned pre-trained models, we develop TaAM-CPT,
treating any category as a learnable vector and optimizing it directly
through aligned pre-trained models. In addition, uni-directional
contrastive learning also improves the classification performance
of all modalities. The experimental results on 13 datasets show that
TaAM-CPT achieves leading results in various classification tasks,
including zero-shot video classification, image classification, audio
classification, and partial-label image classification.
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A DETAILS OF PRE-TRAINED MULTIMODAL
MODELS.

Our TaAM-CPT is built upon multimodal pre-trained models, in-
cluding video-language model, image-language model, and audio-
language model, and uses frozen text encoders for prompt tuning, as
well as frozen modality encoders for object recognition predicting.
In our work, we choose the pretrained multimodal models, open-
sourced by the LAION [42] organization, as the modality-aligned
text and modality encoders. For a total of 300k text sentences on a
single Tesla V100 for the Kinetic-400, MSCOCO, and ESC50 datasets,
each epoch takes 12 minutes and the total training cost for 10 epochs
is about 2 hours.

ViCLIP. ViCLIP is a video-language pretraining model, building
upon the open-source CLIP of OpenAl The model consists of a
video encoder and corresponding text encoder, which is pretrained
on the InternVid dataset containing 7 million videos, each with
detailed text descriptions. We use the BASE architecture as our
baseline model with 12 attention layers and 512 encoding dimen-
sions.

CLIP. We select the open-source image-language pretraining
model released by the LAION organization as our baseline model.

The model comprises an image encoder and corresponding transformer-

based text encoder, each with 12 attention layers and an encoding
dimension of 512. The size of the input image is 224 x 224, with
the patch size being 32. For image modality, CLIP-ViT-B-32 [6] is
selected as the image encoder and image-text encoder.

CLAP. For the audio-language pretraining model, likewise, we
select CLAP released by the LAION organization as our baseline
model. The audio encoder is a transformer-based model with 4
groups of swin-transformer blocks, while the text encoder is RoBERTa.
Two-layer MLPs with ReLU activation are applied to mAP both
audio and text outputs into 512 dimensions. For audio modality, we
select CLAP [61] from LAION [42] as the audio encoder and the
built-in Robert as the audio-text encoder.

B DETAILS OF DATASETS

B.1 Video Datasets

UCF101. UCF101 [45] is a commonly used video classification
dataset that contains 101 different action classes, each class contains
approximately 100~300 video clips, and a total of 13,320 video clips.
These video clips are collected from real data on YouTube, ranging in
length from 10~30 seconds. We use all of the video data to evaluate
our methods.

Kinetic-400. Kinetic-400 [4] is a large-scale, high-quality video
dataset collected from YouTube, including 400 human action classes.
Each action class contains 450~1150 video clips, covering a wide
range of classes, e.g., playing instruments, interactions between
humans and objects, and handshakes. Each action has 250~1000
video clips for the training set, 50 video clips for the validation set,
and 100 video clips for the test set. The validation set is used to
evaluate our methods.

Kinetic-600. Kinetic-600 [2] is an extension of the Kinetic-400
dataset, comprising approximately 480K video clips from 600 action
classes. Each action class has at least 700 video clips. The dataset
consists of 450~1000 video clips for training, 50 for validation, and
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100 for testing per action class. The validation set is used to evaluate
our methods.

Kinetic-700. Kinetic-700 [3] is an extension of the Kinetic-600
dataset, covering 700 human action classes. Each action class has at
least 700 video clips. Each video is a 10-second action clip extracted
from original YouTube videos and labeled accordingly. There are
a total of 650,000 video clips, with each action class comprising
450,100 video clips for training, 5,000 video clips for validation, and
1,000 video clips for testing. We use the validation set to evaluate
our methods.

B.2 Image Datasets

MSCOCO. MSCOCO [27] is a large-scale computer vision dataset
used for tasks such as object recognition, object detection, and
image segmentation. It includes 80 image classes, 328,000 images,
and 2,500,000 instances. It comprises 82,783 training images, 40,504
validation images, and 40,775 test images. We use the validation set
to evaluate our methods.

VOC2007.VOC2007 [11] is an image dataset containing 20 image
classes that can be used to evaluate image classification, object
detection, and image segmentation tasks. It consists of 9,963 images
in total, with 5,011 images in the training set and 4,952 images in
the test set. The test set is used to evaluate our methods.

VOC2012. VOC2012 [11] dataset contains 20 classes, including
people, animals, vehicles, indoor objects, and a background cat-
egory, making a total of 20 classes. It can be used for evaluating
image classification, object detection, and image segmentation tasks.
It comprises 11,540 images, with 5,717 images in the training set
and 5,823 images in the test set. The test set is used to evaluate our
methods.

NUSWIDE. NUSWIDE [7] is an image dataset that contains
269,648 images collected from Flickr, with a total of 81 manually
annotated concepts, including objects and scenes. It includes 161,789
images for the training set and 107,859 images for the validation
set. We use the validation set to evaluate our methods.

ImageNet-mini. ImageNet-mini [38] is derived from the Ima-
geNet dataset and contains 100 classes with a total of 60,000 images,
with 600 samples per class. The training and validation sets are
typically divided into an 8:2 ratio by class. (For small sample classi-
fication, 64 classes are used for training, 16 for validation, and 20
for testing.) We use the test set to evaluate our methods.

Objects365. Objects365 [43] is a large object detection dataset
that contains 638k images, 365 image classes, and 10,101k bounding
boxes, far surpassing datasets like COCO. According to the paper’s
annotation process, a total of 740k images were annotated, with
600k used for training, 38k for validation, and 100k for testing. We
use the test set to evaluate our methods.

B.3 Audio Datasets

ESC50. ESC50 [36] is a standard dataset for environmental sound
classification that contains 50 different environmental categories,
each with 40 samples of up to 5 seconds in duration, totaling 2,000
samples. These samples cover a wide range of environments, such
as animal sounds, traffic noise, indoor activities, etc. All samples
are carefully balanced to ensure uniformity when training models.
We use the validation set to evaluate our methods.
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Prompt: Make several English sentences to describe a
{video }. Requirements: Generate English sentences! Each
sentence should be less than 25 words and includes:
O {air drumming, climbing tree}.
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Prompt: Make several English sentences to describe an
{ Image}. Requirements: Generate English sentences! Each
sentence should be less than 25 words and includes:
{robin, bookshop, vase}.

YL )

(a) Text data for audio class

Figure 7: The candidate label set and text data generated by LLMs.

US8K. UrbanSound8k [39] is a widely used open data set for
automatic urban environment sound classification, which includes
ten categories such as air conditioning sound and car horn sound.
There are 8732 audio clips in the dataset with a length of about 4
seconds. The data set is divided into training and testing sets. We
use the test set to evaluate our methods.

C TRAINING TEXT DATA CONSTRUCTION.

Here, we discuss the text training data construction for different
modalities. We construct the following prompt template to input
into LLaMA-2-7B for generating text description data.
TEMPLATE: Make several English sentences to describe a { Modal-
ity }. Requirements: Generate 5 English sentences! Each sentence
should be less than 25 words and includes: { Labels }.

where { Modality } is replaced with video, audio, and image, {
Labels } denotes the sampled classes. For video modality, which
typically involves single classification tasks, we set the number
of sampled categories to 2 to prevent too many categories from
appearing in one sentence, which could interfere with the model’s
learning of specific representations for each category. For image
classification datasets, where multiple categories can appear on a
single image and audio modalities, the number of sampled cate-
gories is set to 1, 2, or 3 to ensure that the model not only learns
the dependencies between categories but also acquires indepen-
dent representations for each category. As shown in Figure 7, we
randomly select several classes from the label set and construct a
prompt template to query the LLMs to generate text data containing
the semantic information of these classes.

D FURTHER ANALYSIS

Prompt Design. Here, we mainly discuss the variants of consistent
prompt tuning (CPT) in Table 10: a) Shared-Intra (1024), where the
prompt is initialized as 1024-d vector and mapped to 512-d through
a FC; b) Shared-Intra (512) represents initialization as a 512-d vector
and then mapped to 512-d; c) Shared-Inter (512), where all prompts

Table 10: Results of different prompt designs.

Prompt | K400 |MSCOCO |ESC50
Shared-Intra (1024) | (43.1,74.2) 55.4 90.6
Shared-Intra (512) | ( 47.5,75.3) 58.7 91.9
Shared-Inter (512) | ( 50.1,79.3) 62.2 92.1

TaAM-CPT(Ours) | (55.2,80.4)| 68.1 | 94.2

across all modalities share a FC and are mapped to 512-d. On Kinetic-
400, we note a pronounced degradation of these variants. We believe
the decline is mainly attributable to the numerous categories that
are semantically proximate (e.g., making pizza and making sand-
wich). These phenomena are also observed in the MSCOCO and
ESC50 datasets.

Table 11: Different loss weight between intra- and inter-modal learning,.

Lia | Lie| K400 | MSCOCO | ESC50
0.4 | 1.6 | (54.9,80.0) 67.9 94.0
0.8 | 1.2 | (55.1,80.2) 68.1 94.1
1.0 | 1.0 | (55.2,80.4) 68.1 94.2
1.2 | 0.8 | (55.0,80.2) 68.0 94.0
1.6 | 0.4 | (545,79.6) 68.0 93.9

Loss Weight. In this study, we design Ranking loss and uni-
directional contrastive loss to perform intra-modal learning and
inter-modal learning. The Ranking loss aims to learn class-specific
prompt for each modality, while the contrastive loss is applied
to guide the learning of weaker modalities (video) through those
stronger ones (image and audio). Here, we explore the impact of set-
ting different loss weights for these two loss functions. As shown in
Figure 11, Ly, represents the Ranking loss for intra-modal learning,
and LJe represents the uni-directional contrastive loss for inter-
modal learning. Our method achieves the best results when the
weights of L, and Ly, are identical. Additionally, we notice that
when the weight of LJ, is set to 1.0,0.8 and 0.4, there is a significant
decrease in top-1 and top-5 accuracy on the Kinetic-400 dataset,
while the performance on MSCOCO and ESC50 datasets only suffer
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minor damage. This indicates that inter-modal learning greatly af-
fects the learning of weaker modality, which is the video modality
in this case.

Table 12: Results of different prompt initialization.

Prompt initialization| K400 |MSCOCO|ESC50

(53.8,78.7) | 556 90.5
(54.5,79.6) | 653 93.1

[(55.2,80.4)| 68.1 | 94.2

ZS-ViCLIP,CLIP,CLAP
Initialize by CLIP, w/o Linter

TaAM-CPT(Ours)

Prompt Initialization. Here, we explore the initializations of
the prompt in Table 12. Different from randomly initializing the
prompt in the method, we use the output embeddings by CLIP’s text
encoder to initialize class-specific prompt and remove inter-modal
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learning. Therefore, each class-specific prompt encompasses class-
specific textual prior knowledge, allowing TaAM-CPT to converge
quickly with less training data (we collect only 50 text training data
for one class). Although without inter-modal learning, TaAM-CPT
achieves higher performance compared to CLIP, ViCLIP, and CLAP.

E VISUALIZATION OF INTRA-MODAL
LEARNING.

Here, as shown in Figure 8, 9, 10, 11, 12, we present the more visual-

ization results of the distribution of class-specific prompt learned by

intra-modal learning on Kinetic-600/700, MSCOCO, ImageNet-mini,

and ESC50 datasets.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009
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Figure 8: Visualization of the distribution of video prompt and video feature using t-SNE [49] for dimensionality reduction. We randomly select 20 video classes
from the Kinetic-600 dataset.
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Figure 9: Visualization of the distribution of video prompt and video feature using t-SNE [49] for dimensionality reduction. We randomly select 20 video classes
from the Kinetic-700 dataset.
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Figure 10: Visualization of the distribution of image prompt and image feature using t-SNE [49] for dimensionality reduction. We randomly select 20 image classes
from the MSCOCO dataset.
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Figure 11: Visualization of the distribution of image prompt and image feature using t-SNE [49] for dimensionality reduction. We randomly select 20 image classes

from the ImageNet-mini dataset.
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Figure 12: Visualization of the distribution of audio prompt and audio feature using t-SNE [49] for dimensionality reduction. We randomly select 20 audio classes

from the ESC50 dataset.
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